The maize macrohairless1 locus specifically promotes leaf blade macrohair initiation and responds to factors regulating leaf identity.

نویسندگان

  • Stephen P Moose
  • Nick Lauter
  • Shawn R Carlson
چکیده

The leaf surfaces of almost all plant species possess specialized epidermal cell types that form hairs or trichomes. Maize leaves produce three distinct types of hairs, the most prominent being the macrohairs that serve as a marker for adult leaf identity and may contribute to insect resistance. This report describes the maize macrohairless1 (mhl1) locus, which promotes macrohair initiation specifically in the leaf blade. Each of seven recessive mhl1 mutant alleles significantly reduces or eliminates macrohairs in the leaf blade. The mhl1 mutations block macrohair initiation rather than interfering with macrohair morphogenesis. Genetic mapping placed mhl1 within bin 4 on chromosome 9. A second independently segregating locus was found to partially suppress the mhl1 mutant phenotype in certain genetic backgrounds. Macrohair density was observed to increase during early adult vegetative development and then progressively decline, suggesting macrohair initiation frequency is affected by factors that act throughout shoot development. Genetic analyses demonstrated that mhl1 acts in the same pathway but downstream of factors that either promote or repress adult leaf identity. Thus, mhl1 plays a key role in integrating developmental programs that regulate leaf identity during shoot development with those that specify macrohair initiation within the leaf blade.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation.

Development of multicellular organisms proceeds via the correct interpretation of positional information to establish boundaries that separate developmental fields with distinct identities. The maize (Zea mays) leaf is an ideal system to study plant morphogenesis as it is subdivided into a proximal sheath and a distal blade, each with distinct developmental patterning. Specialized ligule and au...

متن کامل

CORKSCREW1 defines a novel mechanism of domain specification in the maize shoot.

In higher plants, determinate leaf primordia arise in regular patterns on the flanks of the indeterminate shoot apical meristem (SAM). The acquisition of leaf form is then a gradual process, involving the specification and growth of distinct domains within the three leaf axes. The recessive corkscrew1 (cks1) mutation of maize (Zea mays) disrupts both leaf initiation patterns in the SAM and doma...

متن کامل

The establishment of axial patterning in the maize leaf.

The maize leaf consists of four distinct tissues along its proximodistal axis: sheath, ligule, auricle and blade. liguleless1 (lg1) functions cell autonomously to specify ligule and auricle, and may propagate a signal that correctly positions the blade-sheath boundary. The dominant Wavy auricle in blade (Wab1) mutation disrupts both the mediolateral and proximodistal axes of the maize leaf. Wab...

متن کامل

Early competition shapes maize whole-plant development in mixed stands

Mixed cropping is practised widely in developing countries and is gaining increasing interest for sustainable agriculture in developed countries. Plants in intercrops grow differently from plants in single crops, due to interspecific plant interactions, but adaptive plant morphological responses to competition in mixed stands have not been studied in detail. Here the maize (Zea mays) response t...

متن کامل

The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize.

Maize (Zea mays) leaves develop basipetally (tip to base); the upper blade emerges from the shoot apical meristem (SAM) before the expansion of the lower sheath. Founder cells, leaf initials located in the periphery of the SAM, are distinguished from the SAM proper by the differential accumulation of KNOX proteins. KNOX proteins accumulate in the SAM, but are excluded from maize leaf primordia ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 166 3  شماره 

صفحات  -

تاریخ انتشار 2004